光合仪,叶绿素仪,果蔬呼吸仪,根系分析仪,冠层分析仪,叶面积仪-k8凯发

 光合仪,叶绿素仪,果蔬呼吸仪,根系分析仪,冠层分析仪,叶面积仪-k8凯发
技术文章
叶绿素知识与叶绿素荧光测定的原理(上)
发布时间:2018-10-11   点击次数:117次
1983年,walz公司首席科学家,德国乌兹堡大学教授ulrich schreiber博士利用调制技术和饱和脉冲技术,设计制造了全世界第一台脉冲振幅(pulse-amplitude-modulation,pam)荧光仪——pam-101/102/103。
所谓调制技术,就是说用于激发荧光的测量光具有一定的调制(开/关)频率,检测器只记录与测量光同频的荧光,因此调制荧光仪允许测量所有生理状态下的荧光,包括背景光很强时。正是由于调制技术的出现,才使得叶绿素荧光由传统的“黑匣子”(避免环境光)测量走向了野外环境光下测量,由生理学走向了生态学。
经过充分暗适应后,所有电子门均处于开放态,打开测量光得到fo,此时给出一个饱和脉冲,所有的电子门就都将该用于光合作用的能量转化为了荧光和热,此时得到的叶绿素荧光为fm。根据fm和fo可以计算出ps ii的最大量子产量fv/fm=(fm-fo)/fm,它反映了植物的潜在最大光合能力。
所谓饱和脉冲技术,就是打开一个持续时间很短(一般小于1 s)的强光关闭所有的电子门(光合作用被暂时抑制),从而使叶绿素荧光达到最大。饱和脉冲(saturation pulse, sp)可被看作是光化光的一个特例。光化光越强,ps ii释放的电子越多,pq处累积的电子越多,也就是说关闭态的电子门越多,f越高。当光化光达到使所有的电子门都关闭(不能进行光合作用)的强度时,就称之为饱和脉冲。
  打开饱和脉冲时,本来处于开放态的电子门将该用于光合作用的能量转化为了叶绿素荧光和热,f达到最大值。
  在光照下光合作用进行时,只有部分电子门处于开放态。如果给出一个饱和脉冲,本来处于开放态的电子门将该用于光合作用的能量转化为了叶绿素荧光和热,此时得到的叶绿素荧光为fm’。根据fm’和f可以求出在当前的光照状态下ps ii的实际量子产量yield=φpsii=δf/fm’=(fm’-f)/fm’,它反映了植物目前的实际光合效率。
  光照状态下打开饱和脉冲时,电子门被完全关闭,光合作用被暂时抑制,也就是说光化学淬灭被全部抑制,但此时荧光值还是比fm低,也就是说还存在荧光淬灭,这些剩余的荧光淬灭即为非光化学淬灭。淬灭系数的计算公式为:qp=(fm’-fs)/fv’=1-(fs-fo’)/(fm’-fo’);qn=(fv-fv’)/fv=1-(fm’-fo’)/(fm-fo);npq=(fm-fm’)/fm’=fm/fm’-1。
  在光照下光合作用进行时,只有部分电子门处于关闭态,实时荧光f比fm要低,也就是说发生了荧光淬灭(quenching)。植物吸收的光能只有3条去路:光合作用、叶绿素荧光和热。根据能量守恒:1=光合作用 叶绿素荧光 热。可以得出:叶绿素荧光=1-光合作用-热。也就是说,叶绿素荧光(叶绿素荧光测定仪)产量的下降(淬灭)有可能是由光合作用的增加或热耗散的增加引起的。由光合作用的引起的荧光淬灭称之为光化学淬灭(photochemical quenching, qp);由热耗散引起的荧光淬灭称之为非光化学淬灭(non-photochemical quenching, qn或npq)。光化学淬灭反映了植物光合活性的高低;非光化学淬灭反映了植物耗散过剩光能为热的能力,也就是光保护能力。
根据ps ii的实际量子产量δf/fm’和光合有效辐射(photosynthetically active radiation, par)还可计算出光合电子传递的相对速率retr=δf/fm’•par•0.84•0.5。其中0.84是植物的经验性吸光系数,0.5是假设植物吸收的光能被两个光系统均分。
当f达到稳态后关闭光化光,同时打开远红光(far-red light, fl)(约持续3-5 s),促进ps i迅速吸收累积在电子门处的电子,使电子门在很短的时间内回到开放态,f回到最小荧光fo附近,此时得到的荧光为fo’。由于在野外测量fo’不方便,因此野外版的调制荧光仪(除pam-2100和water-pam)外,多数不配置远红光。此时可以直接利用fo代替fo’来计算qp和qn,尽管得到的参数值有轻微差异,但qp和qn的变化趋势与利用fo’计算时是一致的。由于npq的计算不需fo’,近10几年来得到了越来越广泛的应用。
2常用型号
叶绿素- 分类
叶绿素分为叶绿素a、叶绿素b、叶绿素c、叶绿素d、原叶绿素和细菌叶绿素等。
叶绿素名称存在场所最大吸收光带
叶绿素a所有绿色植物中红光和蓝紫光
叶绿素b高等植物、绿藻、眼虫藻、管藻红光和蓝紫光
叶绿素c硅藻、甲藻、褐藻红光和蓝紫光
叶绿素d红藻红光和蓝紫光
原叶绿素黄化植物(幼苗期)近于红光和蓝紫光
细菌叶绿素紫色细菌红光和蓝紫光
19世纪初,俄国化学家、色层分析法创始人m.c.茨韦特用吸附色层分析法证明高等植物叶子中的叶绿素有两种成分。德国h.菲舍尔等经过多年的努力,弄清了叶绿素的复杂的化学结构。1960年美国r.b.伍德沃德领导的实验室合成了叶绿素a。至此,叶绿素的分子结构得到定论。(手持式叶绿素测定仪)
叶绿素分子是由两部分组成的:核心部分是一个卟啉环(porphyrin ring),其功能是光吸收;另一部分是一个很长的脂肪烃侧链,称为叶绿醇(phytol),叶绿素用这种侧链插入到类囊体膜。与含铁的血红素基团不同的是,叶绿素卟啉环中含有一个镁原子。叶绿素分子通过卟啉环中单键和双键的改变来吸收可见光。各种叶绿素之间的结构差别很小。如叶绿素a和b仅在吡咯环ⅱ上的附加基团上有差异:前者是甲基,后者是甲醛基。细菌叶绿素和叶绿素a不同处也只在于卟啉环ⅰ上的乙烯基换成酮基和环ⅱ上的一对双键被氢化。
叶绿素 - 化学性质
高等植物叶绿体中的叶绿素主要有叶绿素a 和叶绿素b 两种。它们不溶于水,而溶于有机溶剂,如乙醇、丙酮、乙醚、氯仿等。叶绿素a分子式:c55h72o5n4mg;叶绿素b分子式:c55h70o6n4mg。在颜色上,叶绿素a 呈蓝绿色,而叶绿素b 呈黄绿色。按化学性质来说,叶绿素是叶绿酸的酯,能发生皂化反应。叶绿酸是双羧酸,其中一个羧基被甲醇所酯化,另一个被叶醇所酯化。
叶绿素分子含有一个卟啉环的“头部”和一个叶绿醇的“尾巴”。镁原子居于卟啉环的中央,偏向于带正电荷,与其相联的氮原子则偏向于带负电荷,因而卟啉具有极性,是亲水的,可以与蛋白质结合。叶醇是由四个异戊二烯单位组成的双萜,是一个亲脂的脂肪链,它决定了叶绿素的脂溶性。叶绿素不参与氢的传递或氢的氧化还原,而仅以电子传递(即电子得失引起的氧化还原)及共轭传递(直接能量传递)的方式参与能量的传递。
卟啉环中的镁原子可被氢离子、铜离子、锌离子所置换。用酸处理叶片,氢离子易进入叶绿体,置换镁原子形成去镁叶绿素,使叶片呈褐色。去镁叶绿素易再与铜离子结合,形成铜代叶绿素,颜色比原来更稳定。人们常根据这一原理用醋酸铜处理来保存绿色植物标本。 叶绿醇是亲脂的脂肪族链,由于它的存在而决定了叶绿素分子的脂溶性,使之溶于丙酮、酒精、乙醚等有机溶剂中。由于在结构上的差别,叶绿素a呈蓝绿色,b呈黄绿色。在光下易被氧化而退色。叶绿素是双羧酸的酯,与碱发生皂化反应。
叶绿素不很稳定,光、酸、碱、氧、氧化剂等都会使其分解。酸性条件下,叶绿素分子很容易失去卟啉环中的镁成为去镁叶绿素。叶绿素溶液能进行部分类似光合作用的反应,在光下使某些化合物氧化或还原。人工制备的叶绿素膜在光下能产生光电位和光电流,也能催化某些氧化还原反应。
叶绿素 - 光和作用

光合作用是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存着能量的有机物,并且释放出氧的过程。光合作用的第一步是光能被叶绿素吸收并将叶绿素离子化。产生的化学能被暂时储存在三磷酸腺苷(atp)中,并最终将二氧化碳和水转化为碳水化合物和氧气。

分享到:
| 返回列表 |